3.254 \(\int \frac {(d \csc (a+b x))^{9/2}}{\sqrt {c \sec (a+b x)}} \, dx\)

Optimal. Leaf size=69 \[ -\frac {8 c d^3 (d \csc (a+b x))^{3/2}}{21 b (c \sec (a+b x))^{3/2}}-\frac {2 c d (d \csc (a+b x))^{7/2}}{7 b (c \sec (a+b x))^{3/2}} \]

[Out]

-8/21*c*d^3*(d*csc(b*x+a))^(3/2)/b/(c*sec(b*x+a))^(3/2)-2/7*c*d*(d*csc(b*x+a))^(7/2)/b/(c*sec(b*x+a))^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 69, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.080, Rules used = {2625, 2619} \[ -\frac {8 c d^3 (d \csc (a+b x))^{3/2}}{21 b (c \sec (a+b x))^{3/2}}-\frac {2 c d (d \csc (a+b x))^{7/2}}{7 b (c \sec (a+b x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(d*Csc[a + b*x])^(9/2)/Sqrt[c*Sec[a + b*x]],x]

[Out]

(-8*c*d^3*(d*Csc[a + b*x])^(3/2))/(21*b*(c*Sec[a + b*x])^(3/2)) - (2*c*d*(d*Csc[a + b*x])^(7/2))/(7*b*(c*Sec[a
 + b*x])^(3/2))

Rule 2619

Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a*b*(a*Csc[e
 + f*x])^(m - 1)*(b*Sec[e + f*x])^(n - 1))/(f*(n - 1)), x] /; FreeQ[{a, b, e, f, m, n}, x] && EqQ[m + n - 2, 0
] && NeQ[n, 1]

Rule 2625

Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> -Simp[(a*b*(a*Csc
[e + f*x])^(m - 1)*(b*Sec[e + f*x])^(n - 1))/(f*(m - 1)), x] + Dist[(a^2*(m + n - 2))/(m - 1), Int[(a*Csc[e +
f*x])^(m - 2)*(b*Sec[e + f*x])^n, x], x] /; FreeQ[{a, b, e, f, n}, x] && GtQ[m, 1] && IntegersQ[2*m, 2*n] &&
!GtQ[n, m]

Rubi steps

\begin {align*} \int \frac {(d \csc (a+b x))^{9/2}}{\sqrt {c \sec (a+b x)}} \, dx &=-\frac {2 c d (d \csc (a+b x))^{7/2}}{7 b (c \sec (a+b x))^{3/2}}+\frac {1}{7} \left (4 d^2\right ) \int \frac {(d \csc (a+b x))^{5/2}}{\sqrt {c \sec (a+b x)}} \, dx\\ &=-\frac {8 c d^3 (d \csc (a+b x))^{3/2}}{21 b (c \sec (a+b x))^{3/2}}-\frac {2 c d (d \csc (a+b x))^{7/2}}{7 b (c \sec (a+b x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.27, size = 45, normalized size = 0.65 \[ \frac {2 c d (2 \cos (2 (a+b x))-5) (d \csc (a+b x))^{7/2}}{21 b (c \sec (a+b x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(d*Csc[a + b*x])^(9/2)/Sqrt[c*Sec[a + b*x]],x]

[Out]

(2*c*d*(-5 + 2*Cos[2*(a + b*x)])*(d*Csc[a + b*x])^(7/2))/(21*b*(c*Sec[a + b*x])^(3/2))

________________________________________________________________________________________

fricas [A]  time = 0.59, size = 79, normalized size = 1.14 \[ -\frac {2 \, {\left (4 \, d^{4} \cos \left (b x + a\right )^{4} - 7 \, d^{4} \cos \left (b x + a\right )^{2}\right )} \sqrt {\frac {c}{\cos \left (b x + a\right )}} \sqrt {\frac {d}{\sin \left (b x + a\right )}}}{21 \, {\left (b c \cos \left (b x + a\right )^{2} - b c\right )} \sin \left (b x + a\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*csc(b*x+a))^(9/2)/(c*sec(b*x+a))^(1/2),x, algorithm="fricas")

[Out]

-2/21*(4*d^4*cos(b*x + a)^4 - 7*d^4*cos(b*x + a)^2)*sqrt(c/cos(b*x + a))*sqrt(d/sin(b*x + a))/((b*c*cos(b*x +
a)^2 - b*c)*sin(b*x + a))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (d \csc \left (b x + a\right )\right )^{\frac {9}{2}}}{\sqrt {c \sec \left (b x + a\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*csc(b*x+a))^(9/2)/(c*sec(b*x+a))^(1/2),x, algorithm="giac")

[Out]

integrate((d*csc(b*x + a))^(9/2)/sqrt(c*sec(b*x + a)), x)

________________________________________________________________________________________

maple [A]  time = 1.21, size = 54, normalized size = 0.78 \[ \frac {2 \left (4 \left (\cos ^{2}\left (b x +a \right )\right )-7\right ) \left (\frac {d}{\sin \left (b x +a \right )}\right )^{\frac {9}{2}} \cos \left (b x +a \right ) \sin \left (b x +a \right )}{21 b \sqrt {\frac {c}{\cos \left (b x +a \right )}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*csc(b*x+a))^(9/2)/(c*sec(b*x+a))^(1/2),x)

[Out]

2/21/b*(4*cos(b*x+a)^2-7)*(d/sin(b*x+a))^(9/2)*cos(b*x+a)*sin(b*x+a)/(c/cos(b*x+a))^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (d \csc \left (b x + a\right )\right )^{\frac {9}{2}}}{\sqrt {c \sec \left (b x + a\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*csc(b*x+a))^(9/2)/(c*sec(b*x+a))^(1/2),x, algorithm="maxima")

[Out]

integrate((d*csc(b*x + a))^(9/2)/sqrt(c*sec(b*x + a)), x)

________________________________________________________________________________________

mupad [B]  time = 1.83, size = 99, normalized size = 1.43 \[ \frac {8\,d^4\,\sqrt {\frac {d}{\sin \left (a+b\,x\right )}}\,\left (11\,\sin \left (2\,a+2\,b\,x\right )-7\,\sin \left (4\,a+4\,b\,x\right )+\sin \left (6\,a+6\,b\,x\right )\right )}{21\,b\,\sqrt {\frac {c}{\cos \left (a+b\,x\right )}}\,\left (15\,\cos \left (2\,a+2\,b\,x\right )-6\,\cos \left (4\,a+4\,b\,x\right )+\cos \left (6\,a+6\,b\,x\right )-10\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d/sin(a + b*x))^(9/2)/(c/cos(a + b*x))^(1/2),x)

[Out]

(8*d^4*(d/sin(a + b*x))^(1/2)*(11*sin(2*a + 2*b*x) - 7*sin(4*a + 4*b*x) + sin(6*a + 6*b*x)))/(21*b*(c/cos(a +
b*x))^(1/2)*(15*cos(2*a + 2*b*x) - 6*cos(4*a + 4*b*x) + cos(6*a + 6*b*x) - 10))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*csc(b*x+a))**(9/2)/(c*sec(b*x+a))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________